

Why Biogas from Algae?

Project Leader Andreas Willfors 12 September 2018

REVALUATION OF WASTE PRODUCTS CULTIVATION HARVEST TRANSFORMATION SYSTEM ANALYSIS

The role of Novia UAS

AMPTS II at Novia UAS

Introduction

- Biogas is produced through <u>an</u>aerobic digestion
- Approx. 60% methane (CH₄), 40% carbon dioxide (CO₂)
- Many different usages, may need upgrading
- Renewable, waste treatment method
- Production is increasing, but also demand
- Digestate as fertilizer
- This will focus on why (and why not) algae as a substrate – Not the benefits of algae overall

Introduction

Biogas from Algae

- Many products from algae need high purity or only use a fraction, or extensive dewatering – Not biogas!
- Why only biogas? Anaerobic digestion can use the rest of the algae (extracted), or a consortium of algae
- Spare capacity in existing digesters
- Proven technology,
 demand for the products
- Micro- or macroalgae?

Challenges

- There are usual (biofuel) barriers; financial, technical...
- The composition of algae varies Difficult to predict
- Based on our results, macroalgae is better for biogas, not as much studied as microalgae
- Pretreatment solution to low BMP of microalgae (?)
- Low C/N ratio of microalgae, inhibition of macro →
 Mono-digestion unlikely
- Sustainability of large-scale macro unclear
- Digestate content

Biogas in a Circular Economy

Closed loop with biogas plant as a link between waste and resources

http://biogasaction.eu, Circular Economy
– a healthy transition driven also by Biogas
2 February 2017

Circular Algae and Biogas

Stiles et al., Using microalgae in the circular economy to valorise anaerobic digestate: challenges and opportunities, *Bioresource Technology*, Volume 267, 2018, Pages 732-742

Circular Algae and Biogas

- Many opportunities to recirculate, for example CO₂ in biogas could be used for algae
- Problem with digestate as fertilizer: Finding storage, or enough land close by or other restrictions
- Algae however, could use the digestate throughout the year – In warmer climates. Novia is looking at the energy balance
- Algae instead of soy could increase food security
- The findings of Novia show some barriers But some are common to most circular systems

- Example of <u>added benefit</u> of biogas and circularity is Solrød BiogaS, who had an odour problem caused by beach cast seaweed
- Wanted to address both the climate issue and the seaweed problem at the beach

Conclusion

- Biogas uses waste and local resources, which makes it possible to return nutrients to agriculture
- Algae are turned into biogas already, but in small amounts
- Algae and biogas fit together from the circular economy perspective, as they can recycle nutrients from waste
- Algae could make use the nutrients in digestate also when fertilizing in agriculture is limited
- Energy is important, but food, feed & other uses preferable
 High-value products focused on for financial barriers But biogas can use waste from others

www.biofuelregion.se/transalgae

Arctic Seaweed

Kempestiftelserna

