

Ulf Söderlind

Conversion of Biomass to Biofuel (by HTL)

Project leaders & Partners

Project leader

Swedish University of Agricultural Sciences (SLU) Department of Wildlife, Fish and Environmental Studies

Partners

BioFuel Region AB
Nattviken Invest - Hugo Wikström
NIBIO Bodö
Mid Sweden University
Novia — University of Applied Science, Vaasa
University of Vaasa

Financiers

Botnia-Atlantica, Länsstyrelserna i Västerbotten och Västernorrland, Österbottens förbund, Kempestiftelserna, Arctic Seaweed, partners

PROJECT COURSE

REVALUATION OF WASTE PRODUCTS CULTIVATION HARVEST TRANSFORMATION SYSTEM ANALYSIS

Why Algae HTL (Hydro Thermal Liquefaction)?

- Microalgae rapid growth rate and favorable cultivation characteristics
- Easily to pump wet feedstock into HTL-process
- No drying and less dewatering for feedstock
- Product self-separation
- Energy-dense biocrude to hydrocarbon fuels and chemicals
- Nutrient recovery from aqueous phase recycling
- All components (lipids, proteins and carbohydrates) can be converted to biocrude
- Entirely renewable feedstock.

First and Second Generation biofuels

First:

- Produced directly from <u>food crops</u> such as wheat and sugar, oil seed rape _i.e. oils for use in biodiesel or bioethanol through fermentation.
- Crops has proved very effective.
- <u>Debate</u> over benefit in reducing green house gas and Co₂ emissions,
- Can produce negative net energy gains.
- <u>'fuel vs food'</u>, possible increase in food prices.

Second:

- Produced from <u>non-food crops</u>
- Wood, organic waste, food crop waste and specific biomass crops,
- <u>Cost competitive?</u> in relation to existing fossil fuels.
- <u>Increase</u> 'net energy gains' over coming limitations of first generation biofuels.

Our project works with third generation processes

Third and Fourth Generation Bio-fuels

Third:

- Specially engineered energy crops such as <u>algae</u> as source base
- Cultured to act as a low-cost, highenergy and <u>entirely renewable</u> feedstock.
- Predicted to produce <u>more energy</u> per acre than conventional crops
- Can be grown using land and water unsuitable for food production,
- Manufactured into a <u>wide range</u> of fuels such as diesel, petrol and jet fuel.

Fourth:

- Aimed at not only producing sustainable energy but also a way of <u>capturing and storing</u> <u>Co₂.</u>
- Differs from second and third generation using processes such as <u>oxy-fuel combustion</u>, CCS.
- Carbon capture makes fourth generation biofuel production <u>carbon negative</u>
- Locks' away more carbon than it produces.

Biomass Pathways

CONVERSION PATHS FOR BIOMASS

HTL PARAMETERS

Biomass HTL + Upgrading

Biocrude Properties

	Biocrude	Biooil	Biomass
Moisture	5%	25%	4%
С	77%	58%	51%
Н	8%	6%	6%
0	12%	36%	42%
HHV	35.7	22.6	20.0
Viscosity (cP)	15000	59	SOLID

Algae HTL In System

Source: © 2011 Algae Systems LLC.

HTL Mass Balance Diagram

Albrecht et al., Algal Research 2016

- H2--> 2110 KG/H
- PRODUCT--> 14900 KG/H
- WASTE--> 6960 KG/H
- OFFGAS--> 11690 KG/H

www.biofuelregion.se/transalgae

Arctic Seaweed

Kempestiftelserna

